ЭЛЕКТРОДИНАМИКА - определение. Что такое ЭЛЕКТРОДИНАМИКА
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ЭЛЕКТРОДИНАМИКА - определение

РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ В НАИБОЛЕЕ ОБЩЕМ СЛУЧАЕ, НО БЕЗ РЕЛЯТИВИСТСКИХ ЭФФЕКТОВ
Классическая электродинамика
Найдено результатов: 17
ЭЛЕКТРОДИНАМИКА         
классическая , теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов. Содержание четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему:..1) магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения);..2) электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;..3) силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников - магнитных зарядов, подобных электрическим);..4) электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами - источниками этого поля. Из теории Максвелла вытекает конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн.
Электродинамика         

классическая, классическая (неквантовая) теория поведения электромагнитного поля (См. Электромагнитное поле), осуществляющего взаимодействие между электрическими зарядами. Основные законы классической Э. сформулированы в Максвелла уравнениях. Эти уравнения позволяют определить значения основных характеристик электромагнитного поля - напряжённости электрического поля Е и магнитной индукции В - в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.

Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической Э. определяется Лоренца - Максвелла уравнениями, которые лежат в основе классические статистические теории электромагнитных процессов в макроскопических телах; усреднение уравнений Лоренца - Максвелла приводит к уравнениям Максвелла.

Законы классической Э. неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн (См. Электромагнитные волны), т. е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики (См. Квантовая электродинамика).

Историю возникновения и развития классической Э. см. в ст. Электричество.

Г. Я. Мякишев.

ЭЛЕКТРОДИНАМИКА         
теория электромагнитных процессов в различных средах и в вакууме.
электродинамика         
ж.
Раздел физики, изучающий свойства и взаимодействие движущихся электрических зарядов и связанных с ними явлений (противоп.: электростатика).
ЭЛЕКТРОДИНАМИКА         
и, мн. нет, ж.
Раздел физики электрических явлений, в котором изучаются свойства и взаимодействие движущихся электрических зарядов. Эликтродинамический - относящийся к электродинамике.||Ср. ЭЛЕКТРОСТАТИКА.
электродинамика         
ЭЛЕКТРОДИН'АМИКА, электродинамики, мн. нет, ·жен. (см. электричество
и динамика
) (физ.). Отдел физики, изучающий свойства электрического тока, электричества в движении; ант. электростатика
.
Электродинамика         
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический �
Квантовая электродинамика         
  •  Сложение амплитуд вероятностей в виде комплексных чисел
  •  Умножение амплитуд вероятности в комплексной плоскости
  • 488x488пкс
РАЗДЕЛ ФИЗИКИ
Электродинамика квантовая; КЭД; Уравнения Дирака-Максвелла

квантовая теория электромагнитных процессов; наиболее разработанная часть квантовой теории поля (См. Квантовая теория поля). Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же К. э. лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля - Фотоны, фотоны обладают нулевой массой покоя, энергией E = hν и импульсом р = (h/2π) k, где h - Планка постоянная, ν - частота электромагнитной волны, k - волновой вектор, ориентированный по направлению распространения волны и имеющий величину k = 2πν/c, с- скорость света. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в К. э. как поглощение и испускание частицами фотонов.

К. э. количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются К. э., относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (Комптона эффект), излучение и поглощение фотонов атомами и более сложными системами, испускание фотонов при рассеянии быстрых электронов во внешних полях (Тормозное излучение) и т.п. К. э. с высокой степенью точности описывает эти явления, а также любые др. явления взаимодействия электромагнитного излучения с электронами и позитронами. Меньший успех теории при рассмотрении др. процессов обусловлен тем, что в этих процессах, кроме электромагнитных взаимодействий, играют определяющую роль и взаимодействия иных типов (Сильные взаимодействия, Слабые взаимодействия).

Последовательное построение К. э. привело к пересмотру классических представлений о законах движения материи.

Лит. см. при ст. Квантовая теория поля.

В. И. Григорьев.

КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА         
  •  Сложение амплитуд вероятностей в виде комплексных чисел
  •  Умножение амплитуд вероятности в комплексной плоскости
  • 488x488пкс
РАЗДЕЛ ФИЗИКИ
Электродинамика квантовая; КЭД; Уравнения Дирака-Максвелла
квантовая теория электромагнитного поля и его взаимодействия с заряженными частицами (главным образом электронами и позитронами, мюонами). В основе квантовой электродинамики лежит подтвержденное на опыте представление о дискретности электромагнитного излучения. Кванты электромагнитного поля - фотоны - являются носителями минимально возможных при данной частоте n поля энергии и импульса , где - Планка постоянная,?=c/? - длина волны, с - скорость света. Таким образом, электромагнитному излучению присущи не только волновые (характеризуемые величинами ? и ?), но и дискретные, корпускулярные свойства. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов. Обмен фотонами обусловливает электромагнитное взаимодействие заряженных частиц. Частица может испустить фотоны, а затем сама их поглотить; такое самодействие, или взаимодействие заряженной частицы с собственным полем, приводит к наблюдаемым эффектам: лэмбовскому сдвигу уровней энергии в атомах, поправках к сечениям рассеяния и др. Квантовая электродинамика чрезвычайно точно описывает все относящиеся к области ее компетенции явления: испускание, поглощение и рассеяние излучения веществом, электромагнитное взаимодействие между заряженными частицами и др. Справедливость квантовой электродинамики подтверждена до расстояний 10-16 см.
Электродинамика квантовая         
  •  Сложение амплитуд вероятностей в виде комплексных чисел
  •  Умножение амплитуд вероятности в комплексной плоскости
  • 488x488пкс
РАЗДЕЛ ФИЗИКИ
Электродинамика квантовая; КЭД; Уравнения Дирака-Максвелла

Википедия

Электродинамика

Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся посредством электромагнитного поля, и, следовательно, также является предметом электродинамики.

Чаще всего под термином электродинамика по умолчанию понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля посредством системы уравнений Максвелла; для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый термин квантовая электродинамика. Термин «электродинамика» ввёл Андре-Мари Ампер, опубликовавший в 1823 году работу «Конспект теории электродинамических явлений».

Что такое ЭЛЕКТРОДИНАМИКА - определение